सिद्ध कीजिए

 $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$

$=2 \cos \frac{\pi}{3} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)$

$\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right]$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$

$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$

$=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]$

$=2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{13}}{2}\right) \cos \frac{\frac{9 \pi}{13}-\frac{4 \pi}{13}}{2}\right]$

$=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right]$

$=2 \cos \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}$

$=0=R . H . S.$

Similar Questions

$\sin 15^{\circ}$ का मान ज्ञात कीजिए

यदि $A + B + C = \pi $ तथा $\cos A = \cos B\,\cos C,$ तब $\tan B\,\,\tan C$ का मान होगा

$\operatorname{cosec}\left(-1410^{\circ}\right)$ के मान ज्ञात कीजिए

यदि $\frac{{3\pi }}{4} < \alpha < \pi ,$ हो, तब  $\sqrt {{\rm{cose}}{{\rm{c}}^2}\alpha + 2\cot \alpha } $ बराबर है 

सिद्ध कीजिए

$(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$